INFLUENCE OF THIRD STRESS DEVIATOR INVARIANT
ON CREEP OF NONHARDENING MATERIALS

A, F, Nikitenko

Starting from the hypothesis of the existence of the creep strain rate potential function and following
the ideas developed in [1, 2], we propose a particular form of the potential function for incompressible
nonhardening materials with different creep characteristics in extension and compression, Arguments
are presented on the determination of the experimental constants of the material.

1. Let us assume that the creep of nonhardening materials in the uniaxial stress state is described
by a relation of the form

n=Blo|" (1.1)

The creep exponent n is assumed to be the same in extension and compression, the creep coefficients
B are assumed to be different in extension and compression and hereafter are denoted by By and B_
respectively, 7 is the creep strain rate, and ¢ is the stress.

We write the potential function ®, homogeneous in the stresses, for the creep strain rate in the form

@ =B0 (Szh. + BS2k_L5)S:5)\ )(nH) /2k, Nij = o / asi]- (102)
Here
Se=125y%6,;%  Sa=—0,°05%0,0 0y =0y — eSSy
Here ojj are the stress tensor components, 7jj are the creep deformation rate deviator components,
By, k, n, A are constants of the material,
If we introduce the stress-state angle £, where
sin 3=, V3S,/ 8.0

then (1.2) takes the form
® = BoS;"* ™D [1 4 5 (sin 8)* = (w+1) / (1.3)

The creep deformation rate deviator components will be

e (n—1) .
= (n4 ”BOZS2 [ - o (sin 3g) | (1-2k) / {[1 4 ak— 3;]1(sm 35)11
3 Ax [ 3\

X6 — T T <§;) A(sin 135)7‘i1 <Gik°°m'° —~% Szﬁ;]‘)}
2 A,
(==(35)"%) (1.4

We obtain the following relation for the deviator "similarity phase" w:

1 8m/0E 3 M (sin3£)* 1 cos 3¢

tg o= 28; 9085, =77% 1+ o (sin 38)* (1.5)

It is obvious from (1.4) that for materials with different creep characteristics in tension and com-
pression it is necessary that A be an odd number.
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In many experiments, [4], for example, some axial creep has been
observed for pure torsion of the specimens. In order to describe this
experimental fact we must on the basis of (1,5) set A= 1,

Thus, to specify the potential function (1.3) we must determine the
parameters n, «, k, By, The creep exponent n is usually found from (1.1)
[2]. Further, setting in (1.4) sequentially nonzero oy1= ¢ > 0 (£ = —1/6 )
and o33 =0 <0 (£= 1/6 7 and comparing the resulting relations with (1,1)
we obtain

(1.6)

A —A+ 4 <§3(1’L+1)/2B+)2h‘/(7l+1)
=N

s+l) /2 \2k/(n+1)
n-1 )

’ A—=(—_n-1T

which together with (1.5) make it possible to find o and k. The remaining
constant By is expressed in terms of those already defined

Bo==[Ys (A_+ A,)]™0) [2F

We see from these relations that if the creep characteristics in
tension and compression are the same B; = B_, then @ = 0 and relations
(1.3) and (1.4) become the usual relations [2,5] and then w =0,

2., From (1.2) the power W dissipated in the case of creep will be
W =m0, =(n 410 2,1)

In stress space the surface of constant energy dissipation W = const is a cylindrical surface whose
axis of symmetry is perpendicular to the deviatoric plane and passes through the coordinate origin. The
requirement that the surface W = const be convex imposes certain limitations on the constants a and k,
which are found from experiment. In fact, in the p, 0, z cylindrical system, where the z axis is aligned
with the axis of the cylinder, the angle 0 is measured from the direction in the deviatoric plane given
relative to the oy, oy, o3 axes by the direction cosines 1/+2, 0, — 1/v2 respectively; the trace of the cylinder
W = const in the deviatoric plane will be given by the equation

p= CIL + a(sin30) I, p="sV3V(or—0)’+ (62— + (Gs— 1) (2.9
o B — 1 26y —o1—03 H 11 1455 453
B =YE T a—e =L T SEST =T g

It follows immediately from (1.6) and (2.2) that || < 1. For convexity of the surface W = const, we
must require that the equation defining the inflection point,

dp2_ %
92+2(%) —P g =0

or in expanded form for A =1,
(4k% — 9)a2 sin? 30 4 2 (4% — 9ka sin30 + 9 (1 — 2k)a? - 4k2=0 (2.3)
not have a solution. The corresponding analysis of (2,3) is very simple and therefore is not presented here.
The figure shows the sections W = const in the deviatoric plane for the following initial conditions:

n=9, B,/B.=3, k= -3 a=032 (curve 2),
n=19, B,/B =3, k=10 o= —08 (curvel),

where the dashed curve shows for comparison the Mises circle. As a consequence of (2.1) the creep
strain rate vector will be orthogonal to the surface W = const,

In conclusion we note that a similar analysis with construction of the corresponding potential func-
tion can be made for materials whose creep for the uniaxial stress state is described by a relation of the

form
= K exp (x5)

with different constants K and w for tension and compression.
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